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Abstract

The role of experiment in elucidating the dynamic

mechanical behavior of inelastic solids is discussed with

particular emphasis on the type of results which can be obtained

from wave propagation experiments. Recent experimental results

obtained by the author and his co-workers are reviewed as is work

by other investigators in the field. Viscoelastic waves, plastic

waves and shock waves are considered and in particular a recent

observation by the author of the generation of tensile shock waves

in stretched rubber is described. The fracture behavior

of brittle plastics under stress-wave loading, and some recent

work by Phillips on stress waves produced by tensile fractures are

mentioned.
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Introduction

Before reviewing experimental advances in the field of

stress wave propagation in anelastic solids it is perhaps

appropriate to discuss the reasons .that such experiments are

carried out and what type of information they can be expected to

yield. Elastic solids are assumed to behave in a completely

linear manner where the components of strain are postulated to be

linear combinations of the components of stress; it is found that

for sufficiently small deformations the experimental behavior of

many real solids closely corresponds with this assumption. It

could be argued that even if this were not found to be so in

nature, the theory of linear elasticity would still be worthwhile

as a mathematical study, in that the physical assumptions are so

simple that their mathematical consequences should be investigated

purely as a problem in mathematical analysis. It might, of cour-se,

be alternatively argued that applied mathematics should be

concerned with a description of the real world, and that the only

justification for work on elastic theory is that it describes

real situations; if mathematical problems are to be studied per se,

there are many more promising fields.

Fortunately, however, this question does not arise and the

theory of mathematical elasticity is a well established discipline

which has yielded many results which are essential to the design

of engineering structures. Now the mathematical problems set by

elastic theory are always difficult and often intractable, and the

field of experimental stress analysis has arisen as a result of
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this. Experimental work is used as a form of analogue computer

which produces numerical answers to problems for which exact

analytical solutions are not known. The experimental technique

of this type which has received perhaps the greatest attention

is photoelasticity - this depends on the observation that for

many materials the birefringence produced by elastic deformation

is linearly related to the applied shear stress. In using this

technique it is important to match the value of the Poisson's

ratio of the material used for the model to that of the structure

under investigation. It is also generally found to be limited to

two-dimensional stress-distributions, although in recent years

the technique has been extended by frozen-stress methods. With

the aid of these, some three-dimensional problems can be tackled;

the use of photoelastic coatings has also led to considerable

experimental advances. There are many books on the theory and

practice of this subject of which the classic by Coker and

Filon [1] and the treatises by Jessop and Harris [2], Frocht [3],

and Durelli and Riley [4] should be listed.

The use of electrical strain gages enables one to measure

the strain in a model of the same material as the structure to be

analyzed and the 'Handbook of Experimental Stress Analysis' [5]

gives excellent accounts of both this technique and that of photo-

elasticity.

When we come to dynamic problems which involve only

elastic deformations, most of the above considerations apply with

equal force, and although one more physical parameter, namely the



3

density, is now involved, theoretical solutions can be written

down for several simple problems. Here again, the reason for

carrying out experiments is to obtain numerical solutions to

problems which are mathematically intractable, and the experi-

mental apparatus may again be regarded as an analogue computer.

Now when departures from exact elastic behavior take place,

the nature of the problems becomes quite different; theoretical /
predictions are possible only if the inelastic behavior can be

specified mathematically and it is found that the way in which

materials deviate from perfect behavior varies from solid to

solid. The deviations are found to be of two types. First, as a

result of mechanical yielding (or because the magnitude of the

strains is becoming comparable with unity), the simple Hookean

relation between stress and strain is found no longer to be valid

and the strain becomes a non-linear function of the stress.

Furthermore the value of the strain may cease to be a univalued

function of the stress, and depends upon the particular path by

which the final stress was reached. These are the types of

deviations which are dealt with in the mathematical theory of

plasticity and in the mathematical study of large rubber-like

deformations. In these theories it is, however, assumed that, so

long as inertia effects can be neglected, the stress-deformation

relation does not depend on the rate of loading and the stress-

strain curve is the same for all straining rates. These theories

give predictions which are found to approximate very closely to

the results observed experimentally, on the one hand with metals

and on the other with some rubbers.
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Now in addition to this type of deviation many solids

show time-dependent stress-strain behavior, thus if a constant

load is maintained the strain is often found to increase steadily

with time; this phenomenon is known as creep. Alternatively, if

the material is deformed and the deformation is held at a fixed

value, the stress is found slowly to decrease, this is a

phenomenon known as stress relaxation. Such materials are termed

viscoelastic and for small deformations many of these materials

are found to obey Boltzmann's Principle of Linear Superposition.

This principle states that if a stress history al(t)

produces a strain history %1(t) in a specimen, and a stress

history a 2 (t) produces a strain history 6 2 (t) in the specimen

then if the combined stress history a 1 (t)+a2 (t) is applied, the

strain history will be given by 1 (t)+E2 (t). A particular

application of this principle is that if a stress history is of

the same shape but has twice the value at each instant, the

resulting strain-time curve will have the same shape but twice

the amplitude. Materials which obey Boltzmann's Principle are

termed linearly viscoelastic, and the relation between stress and

strain in them can be expressed, either in the form of a convolu-

tion integral or as a differential equation which relates the

stress and strain in terms of the derivatives of these two

quantities with respect to time.

Many high polymers and rubber-like solids are found to be
for small strains,

linearly viscoelastic/and the theory of wave propagation through

solids of this type has been treated theoretically for quite some
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time, although often mathematical models which are analytically

convenient but physically unrealistic have been employed.

Hunter gives a comprehensive review of work in this field up to

about 1960 [6] and the subject has also been reviewed by the

present author [7-9].

The theory of wave propagation through materials with a

yield point, the stress-strain behavior of which is essentially

non-linear but is not rate-dependent was first considered by

Donnell in 1930 [10]. It has subsequently been developed by

G.I. Taylor [11], von Karman and Duwez [12], Rakhmatulin [13],

and White and Griffis [14]. Accounts of this theory can be

found in books by Kolsky [15] and Goldsmith [16] as well as in

review articles by Broberg [17], Abramson, Plass and Ripperger [18],

Cristescu [19] and by Craggs [20]. This theory has been found to

predict fairly closely the propagation of large amplitude waves

through metals althoughlas discussed later, observations which

must be due to rate effects have become increasingly apparent in

recent years.

The theory of waves of finite amplitude in solids has

received considerably less attention, but one aspect of it namely,

the setting up of shock waves in solids, has been studied

intensively by a number of theoretical and experimental schools,

and a review of this work by Duvall [21] summarizes the advances

made in the field.

Most real materials are found to be to some extent both

non-linear and rate-dependent in their stress-strain behavior, and
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although the two extreme cases, namely, plastic wave propagation

and linear viscoelastic wave propagation, approximate very closely

to the behavior of metals and polymers respectively, even here

deviations are observed. For plastic waves, for example, although

the velocity of the plastic wavefront agrees with the simple

theory, the distribution of plastic deformation is found not to

be in agreement with the theoretical predictions. Furthermore the

rate-independent theory predicts that each element of strain

travels with a velocity given by (S/p)l/ 2 where S is the tangent

modulus at that strain. Bell [22] tested this hypothesis experi-

mentally by pre-straining a copper,wire in tension quasi-statically

and then sending an additional tensile pulse along it. Since the

wire was already well into the plastic range due to the static

loading, the pulse would be expected to travel according to the

rate-independent theory• at a velocity considerably below the

elastic wave speed. Bell found, however, that the superimposed

pulse traveled at the velocity (E/p)1/2 where E was Young's

modulus for copper, the modulus which should be applicable only

for very small strains. This result was confirmed by Sternglass

and Stuart [23] for copper and led to similar work by Alter and

Curtis [24] on lead specimens. The results of these experiments

seem to be explicable only in terms of a rate-dependent theory

and theories of this sort have been developed by Sokolovsky [25]

and Malvern [26],[27]. These theories, although based on highly

simplified models show the general effect of a velocity of

propagation for rapidly changing stresses of (E/p) /2, while the
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quasi-static stress-strain curve is that observed experimentally.

Although the mathematical treatments of wave propagation in such

non-linear viscoelastic solids is necessarily involved, more

theoretical work of this type would certainly prove useful.

When the amplitude of the stress pulses becomes

sufficiently large, the specimen fails completelyjand brittle or I!

ductile fractures take place. Interest in these problems was

revived in the Second World War, and work along these lines has

subsequently continued. Accounts of the results of investigations

on metals are given in the book by Rinehart and Pearson [281 and

also a general discussion will be found in a recent review

article by Rader and the present author [29].

Linear Viscoelastic Solids

The relation between stress and strain for most solids is

found to depend, to some extent, on the duration over which the

stress is maintained. Thus if a constant stress is applied to a

solid specimen the strain is, in general, found to increase

gradually with time,and this phenomenon is called creep.

Alternatively if a constant deformation is maintained the stress

is found to decrease monotonically with time and this phenomenon

is called stress-relaxation. The magnitudes of these phenomena

can be relatively very small, as is found to be the case for

metals, or relatively quite large as is found for many soft

plastics. The creep and stress relaxation may be linearly pro-

portional to the stress, or they may be complicated functions of

the stress and time.
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When the creep is linearly proportional to the stress,

the mathematical treatment is considerably simplified and the

material is called a linear viscoelastic solid [see Gross [30]].

Thus if we first consider uniaxial extension,.we have that a

constant stress a applied at time t=0, produces a uniaxial

strain c such that

S= a 4'(t) (1)*

where V(t) is called the creep function.

If we have a loading history which consists of a series

of constant loads Aal,Au2,Ac3 ... ,Aa nA which can be either

positive or negative, commencing at times tllt 2 ,t 3 ,...,tn etc.

then as a result of the principle of linear superposition, the

strain at any time t is given by

p=n
s(t) = E Aa V(t-t ) (2)

p=l P n

and in the limit for a continuous loading history we have

Tr=t

C(t) = J (t--T) ýLcr dT (3)

This is one mathematical expression of Boltzmann's superposition

principle. An alternative representation is to consider the

specimen to have undergone a particular deformation history E(t)

and express the stress a(t) as a convolution integral involving

the strain and the stress relaxation function W(t) thus

T=t

u(t) = W(t-T) dT dT (4)
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These methods of describing the stress-strain relations of

linearly viscoelastic solids are physically the most satisfactory,

but without some knowledge of the nature of the creep function

p(t) or the stress relaxation function T(t) they are not particular-

ly useful in solving specific problems, and an alternative

approach has been to express the stress-strain relations as

linear differential equations involving the stress, the strain and

their derivatives with respect to time. Thus for a single stress

component a and a single strain component E,we may write

Pa = QC (5)

where P and Q are linear differential operators thus

P a + a d + ad2 +0 d dt2

and (6)

d d2
bo b, ýj 2 dt 2 ""

This treatment can readily be extended to three dimensions

by defining the stress and strain deviators sij and eij by the

relations

. (7)
sij ij 3 kk ii

and

e. E;. (8)eij =ij -3 •kk ij

(where 6.. is the Kronecker delta thus 6.. = 1 when i=j and

6.. = 0 when i#j).We can then write the stress-strain relations

in terms of four linear operators; thus
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Ps1 j = Q e (9)

and

P'u = Q te'i (10)

where P and Q here describe the shear behavior, P' and Q' the

bulk behavior.

The use of linear operators such as those given by these

equations allow viscoelastic problems to be treated in terms of

simple linear differential equations, and so long as the response

of the viscoelastic material can be reasonably approximated to by

a few terms in the operational polynomials, it is possible to
specific

obtain solutions of/dynamic problems in closed form, or at least

to obtain numerical solutions. The use of finite polynomials for

P and Q is exactly equivalent to the assumption that the material

is behaving like a mechanical model composed of perfectly elastic

springs and viscous dashpots;(for the latter, the velocity is

assumed proportional to the applied force). The three simplest

models of this type are the Maxwell model for which P = a +a d
o ddt

and Q = b d-, and this model corresponds to a Hookean spring and
1 dt'

a viscous dashpot in series, the Kelvin-Voigt model which is a

spring with a dashpot across it and for which P = a and0

Q = bo+bl -, and the standard linear model which corresponds to

either a Maxwell model with a spring across it or a Voigt model
d

with a spring in series with it, and for which P = ao+aI •-- and
od d

Q = bo+b d A number of dynamic problems, including
o 1 dt

longitudinal wave propagation along a thin filament have been

treated by Lee and his co-workers [31] and the results of this



work give a general qualitative picture of the phenomena to be

expected. As is discussed below, the quantitative agreement is

not so satisfactory except for a few rather special solids.

Another way of treating linear viscoelastic behavior is

to consider how a specimen responds to a deformation that varies

sinusoidally with time. Since the material is assumed to obey

a linear differential equation~the stress will oscillate at the

same angular frequency as the strainj although not necessarily in

phase with it. Thus for a uniaxial deformation of angular

frequency w we have if the strain 6 is

S= C cos Wt (11)

the uniaxial stress is given by

S= a cos(wt+S) (12)

The response is then defined by the ratio of the stress amplitude

to the strain amplitude, i.e. E* = a o/o, and also by the angular

phase lag 6, both of these quantities are in general frequency

dependent.

These two parameters are comparatively simple to measure,

and such measurements have been carried out by many workers over

extremely wide rangesof frequency. These include Lethersich [32]

who measured the response of specimens of several common polymers

in torsional oscillation. Figure 1 shows a plot of his results

for log1 0 (tan 6) against log 10o and the results are compared with

the response expected for Maxwell, Kelvin-Voigt and standard linear

solids, (the positions of these latter curves are arbitrary). On
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the same plot are shown the measured response of two organic

glasses, hydroxy pentamethyiflavan and glycerol sextol pthalate.

These materials are of comparatively low molecular weights and

the points are based on measurements made by Benbow [33]. It

may be seen that although the behavior of polymers is badly out

on a numerical basis from that of the model solids, both organic

glasses correspond very closely to Maxwell solids over several

decades of frequency. Only at higher frequencies do they too

begin to flatten out like the high polymers.

The figure shows that if a simple model is to be taken

for the high polymers, which are after all by far the most

important viscoelastic solids, the assumption that tan 6 is

independent of frequency is a far better one than any of the

simple mechanical models.

The theory of linear viscoelasticity shows that tan 6

and E* are not independent functions and that if for example E*

is known at all frequenciestan 6 can be calculated for all

frequencies. Similarly, if tan 6 is known at all frequencies,

dE*/dw at all w can be determined,and hence if the value of E*

is known at any one frequency wo, E* at all frequencies can be

determined. In the particular case where tan 6 is independent

of w over a large frequency range, the approximate relation

E*(w) E (I + 2 tan 6 kn w/wo) (13)
0 ITf 0

may be shown to hold, where E is the value of E* at some

standard frequency w0o
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We now come to the propagation of an infinite train of

sinusoidal waves of angular frequency w along a filament. If at

the origin the stress a is defined by

a = ao cos Wt (14)
0

the stress at any point a distance x from the origin is

"a = a exp(-cx)cos w(t-x/c) (15)0

where a is the attenuation coefficient which is given by

w tan -

a2 (16)

and c is the phase velocity which is given by

1
2c = (E*/p•) sec (17)

E* and tan 6 are here assumed to have the values appropriate to

the angular frequency w . Now since linear superposition applies

an expression can be written down for the propagation of a

disturbance of any shape. Thus, if the strain at the origin E(O)

is given by the Fourier integral

00

C(O) f A(w)exp iwt dw, (18)

0

the strain s(x) a distance x along the filament is then given by the

expression

00

E (x) f A(w)expE[-ax+iw(t-x/c)]dw (19)

0
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where a and c are both real functions of w whereas A(w) is, in

general, a complex function of w.

In order to calculate the change in shape of any mechanical

pulse as it progresses along a viscoelastic rod all that is

required is a knowledge of how a and c vary with frequency over a

sufficiently wide frequency rangeand direct measurements of these

quantities can be made by observing the phase and amplitude of

sinusoidal waves travelling along filaments [e.g. Hillier and

Kolsky [34 ] and Hillier [353]. Alternatively the value of c and

a as functions of w can be obtained from the values of E* and

tan 6 using relations (16) and (17). Once the values of c and a

are known over a sufficiently wide range of frequencies the

Fourier integral can be approximated to by a Fourier sum of

cosines and sines.

If we are able to use the approximate relation (13),

(which is appropriate for most polymers at temperatures remote

from their transition temperature) we find that for the phase

velocity

c(M) z c (l + tan 6 kn(w/wo)). (20)

The shape assumed by a sharp pulse after it has travelled some

distance along a rod of any such polymer can be obtained in non-

dimensional form [see Kolsky [36]] and the 'universal shape' of

a pulse can be calculated once and for all. The difference caused

by variations in initial shape rapidly disappear since these are

produced by the high frequency components which are greatly
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attenuated. Figure 2 shows this universal shape calculated

theoretically and compares it with the shape of the pulse

observed from the sharp blow produced by the detonation of a

small explosive charge at the end of a polymethylmethacrylate

rod after it has travelled 6 meters. It may be seen that the

agreement is extremely satisfactory.

In such experiments as those described above the visco-

elastic modulus involved is a generalized form of Young's modulus,

E, but for most three-dimensional problems in wave propagation

two time-dependent moduli are involved which correspond to the

two elastic constants in three-dimensional elasticity. Physically

the two most reasonable moduli to consider are those which corre-

spond to the shear modulus and the bulk modulus, but experi-

mentally the latter is rather difficult to measure. Recently

Lifshitz and the author [37] have studied the propagation of

spherical pulses in large blocks of plastics using an experimental

set-up illustrated diagram in figure 3, and have found that the

viscoelastic bulk modulus as well as the shear modulus is frequency

dependent. For the three plastic studied namely, polyethylene,

polymethylmethacrylate and polystyrene, the value of tan 6 for

volume changes was found to be about one fifth of its value for

shear deformations, but it is too early to say whether this is a

general rule for polymers of this type, or whether the similarity

of the results for the three polymers is to some extent coincidental.

The observations that the bulk loss follows the shear loss over a

large range of values does seem to give strong indication. "hpwever,
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that what is observed as 'bulk viscosity' macroscopically is the

result of shear losses on a molecular or microscopic scale; for

a material composed of long chain molecules this is not

particularly surprising on physical grounds. It should be

emphasized that for ordinary fluids the bulk losses are a tiny

fraction of the shear losses due to viscosity.

Figure 4 shows the observed pulse shape

in a block of polyethylene compared with the shapes predicted on

the basis of assumption that, (a) the bulk loss is zero, (b) the

bulk loss is one fifth of the shear loss and (c) that the bulk

loss is equal to the shear loss. It may be seen that the agree-

ment observed between the experimental results and the curve

based on the second assumption is extremely close.

Very recently Tsai and the author [38] have observed the

pulses produced by the impact of steel balls as they propagated

over the surfaces of blocks of polyethylene and

polymethylmethacrylate. The results of this work have

shown that the assumption that the ratio of the shear loss to the

bulk loss is a constant once again gives excellent predictions of

the shapes of the pulses propagated over the surfaces of the

specimens.

Plastic Waves

The time dependence of the stress-strain relation for

most metals is very much less marked than it is for high polymers

andas a first approximationthe assumption that the stress-strain
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relation is time-independent is a perfectly satisfactory one for

most purposes. The first treatment of the problem of wave

propagation along a material with such characteristics was

published by Donnell [10] in 1930. Donnell considered the

propagation of a longitudinal step wave along a thin rod of a

material which had a bilinear stress-strain curve, the first

part of the curve was assumed to correspond to the elastic

behavior, and the second to strain-hardening associated with

plasticity. Donnell showed that under these conditions two wave

fronts would propagate along the rod, the fastest one travelling

at the elastic wave speed (E/p) where E is Young's modulus for

elastic deformations, and the second which has been termed a

plastic front at a speed given by (S/p)1/2 where S is the slope of

the plastic portion of the curve.

The subject lay dormant for about ten years and only

during the Second World War did a number of workers, all apparently

unaware of Donnell's paper, reopen the question of plastic waves.

In England, G.I. Taylor [11] tackled the problem, in this country

it was von Karman and Duwez [12] and White and Griffis [14], while

in the Soviet Union the problem was treated by Rakhmatulin [13].

Apparentlyhere again, there was little communication between these

separate workers and only later were the results published. As

mentioned in the introduction, the nature of plastic wave propaga-

tion has been reviewed by several authors [15-20] and the predictions

of the rate-independent theory are found to be reasonably borne out

in practice. A careful examination of the results of Duwez and
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Clark[39] by Lee [31] has shown that the distribution of

permanent plastic strain does not quantitatively agree with that

observed experimentally, and although this was originally attributed

to the complicated reflections of the plastic wave during the

unloading process - a number of features and particularly the

absence of a sharp plastic wavefront led Lee to surmise that the

rate dependence of the stress-strain curve was responsible for the

experimentally observed deviations. Malvern [26] developed a theory

to account for such deviations and has recently shown [27] that

the original calculations were subject to computational error and

were in any case taken for far too late a time, the true picture beink

very much closer to the observed behavior. Figure 5 shows the

curves obtained by Malvern for two times after the first applica-

tion of the load. It may be seen that the plastic wavefront is

much less well-defined than in the rate-independent theory and the

plateauxof plastic strain do not persist So far down the wire.

This observation is in accord with the experimental observations

of many workers in the field including those of Duwez and Clark [39]1

Douch and the author [40i observed similar effects with aluminum

and copper specimens. A year before Malvern's first paper

appeared Sokolovsky [25] in the Soviet Union published a similar

type of visco-plastic theory and this led to the same equations as

those derived by Malvern. He did not, however, carry out any

specific calculations of the effect of rate-dependence.

At about the same time Bell [22] tested the rate-independ-

ent theory in another way, he stretched a copper specimen and
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while it was being drawn he propagated an additional incremental

tensile pulse. According to the rate-independent theory such

incremental pulses should travel at a velocity of (S/p)I/2 where

S is the tangent modulus, in fact Bell found they travelled at a

velocity c =(E/p) 1 /2 ,the elastic wave velocity, which, since the

copper was well in its plastic range, was considerably higher than(S/P)

As mentioned earlier these results were later

confirmed for copper by Sternglass and Stuart [23] and for lead

by Alter and Curtis [23]. In the work with lead, both the pre-

load and the incremental load were dynamic. Since, however, this

metal is notoriously rate-dependent and almost viscoelastic in its

behavior,the reliability of the conclusions to be drawn from this

work is to some extent doubtful. The theories of Malvern and

Sokolovsky both predict that 'instantaneous' changes in stress

will travel at the elastic wave speed and thus although the time-

dependent non-linear behavior in both these theories is rather

simplifiedthey do seem to explain the observed discrepancies of

the shape of the plastic wavefront and the Bell effect very well.

In determining the stress-strain behavior of such non-linear

time-dependent solids at these very high loading rates one is to

some extent trapped in a vicious circle. Any attempts to make

measurements in short times inevitably involves wave propagation'

these cannot be interpreted unless the nature of the constitutive

relation is known. -Many attempts have been made to circumvent

this difficulty, the earliest being by G.I. Taylor [41],

by E. Volterra [42] and by the author [43].
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These methods depend on the use of auxiliary steel bars

which are themselves not strained beyond their elastic limits and

along which elastic waves travel. Observations of these waves

enables the stress-strain behavior of the inelastic specimen to

be inferred. The method devised by the author (43) consists of

inserting a cylindrical wafer of the material under investigation

into a split 'Hopkinson Bar'. A mechanical pulse is then

propagated along the bars and by observation of the elastic stress

pulses in the two steel bars, the stress-time curve and the strain-

time curve for the specimen can be obtained.

During the last twenty years this method has been used

extensively for stress-strain measurements at very high rates of

loading by workers including Hauser, Simmons and Dorn [E4],

Davies and Hunter [451, Lindholm [46], Malvern [47], and

Ripperger [48]. As was first pointed out by the author [43],v

there are serious limitations to this experimental method. Thus,

on the one hand if the specimen is long compared with the pulse

length, wave propagation can occur along it and it is not subjected

to constant longitudinal stressi if on the other hand the specimen

is very short, frictional effects prevent uniform straining and

barrelling may occur, although this can to some extent be reduced

by suitable lubrication of the interfaces. Eubanks, Muster and

Volterra [49] have considered the theory of the first effect, and

\/Bell [50] has made a careful experimental study of some of the

errors which might be expected to take place. Jahsmann [51]

recently has investigated theoretically the likely expected errors
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resulting from the wave propagation effects and he has shown that

so long as the pulse length is several times the length of the

specimen, the errors are of manageable proportions.

Some years ago Bell [52] devised an extremely elegant

technique for making dynamic strain measurements. This method

depended on a diffraction grating ruled on the specimen, he

measured the angle of the diffracted beam and thus inferred the

values of the strains. He has used this technique successfully

in a number of dynamic stress-strain measurements and has shown

that the rate effect for highly annealed and extremely pure metals

is very small [531.

Most other workers using less highly annealed metals have

observed rate effects although these are generally quite small in

magnitude. Figure 6 shows a comparison of the 'static' and

'dynamic' stress-strain curves for pure annealed aluminum obtained

by Douch and the author [401 and it may be seen that the rate effect

is not large. Rate effects of the same order of magnitude were

observed in these experiments with pure annealed copper, while a

aluminum-silicon alloy showed no measurable rate effect. Thei'e

have been numerous other measurements of rate effects in metals and

they go back to the work of Clark and Datwyler [54] in 1938. The

work of Manjoine and Nadai in 1940 [55] is still of some interest,

and the excellent work of Campbell and Marsh [56] and Maiden and

Green [57] should also be referred to. This by no means exhausts

the list of workers in the field and reference should be made to

a recent survey report by Lindholm and Bessey [58], to the Proceed-

ings of the conference on'the'Mechanical Properties of Materials
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at High Rates of Loading'edited by Lindholm [591, as well as to

the proceedings of the ASME symposium edited by Huffington [60].

The main conclusion which is derived from all these

investigations is that, except for steel, rate effects in metals

are relatively unimportant but can nevertheless sometimes result

in quite startling deviations such as the Bell effect. For most

purposes, however, it is sufficient to use a single 'dynamic'

stress-strain curve to account for the observed behavior, and even

if the 'static' curve is used the errors observed are not large.

Recently dynamic behavior under multi-axial loading has been

receiving much more attention, for example a paper on this subject

was presented by Lipkin and Clifton [61] at the last IUTAM Congress.

When we come to other non-linear time-dependent behavior

the experimental evidence is very much more sparse. Goldsmith and

Austin [62] have studied wave propagation in diorite rock specimens

and found that the loss for this material is of a frictional type

and that the modulus is not frequency sensitive. Calvit, Rader,

and Melville [63] performed some preliminary measurements on pulse

propagation along plasteline-clay rods and found that whereas

this material behaves like a linear viscoelastic solid for pulses

of small amplitude, at larger amplitudes the material flows

plastically like a metal. Bodner and the author [64] studied both

the free oscillations and the propagation of pulses in lead bars

and found that the logarithmic decrement was amplitude dependent

but the modulus was insensitive to frequency. This resulted in

the propagation of more or less symmetrical pulseswhich decreased
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in amplitude and broadened as they travelled along the lead bars.

Another type of non-linear behavior on which a large

amount of experimental and theoretical effect has been expended,

is the propagation of shock waves in solids. Most of this work

is concerned with the propagation of large amplitude compression

pulses from the detonation of explosive charges on blocks of the

solids. As a result of the increasing value of the bulk modulus

at these high pressures, shock fronts are producible, this work

enables constitutive equations relating pressure and volume to be

obtained, and as mentioned earlier, Duvall [21] gives an excellent

summary of work of this type which has been carried out in recent

years.

Another type of shock wave can occur in tension when the

stress-strain curve is concave upwards, i.e. when the tangent

modulus da/de increases with increasing strain. Lee and

Tupper [65] have discussed the theoretical basis for such shock

wave generation in steel, where at large amplitudes the stress-

strain curve becomes concave. In the book [15] by the authorit

is pointed out that similar behavior might be expected in rubber,

which also has a dynamic stress-strain curve which is concave

upwards. Figure 7 shows the velocity of propagation of small

sinusoidal waves along filaments of natural rubber as a function

of the tensile pre-strain. These measurements were carried out

by Hillier [66]. The large attenuation of high frequency waves

prevents very sharp shock fronts from being set up in the

material when it is in the unstretched state. If, however, the

rubber is highly stretched to begin with and an additional tensile
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pulse is propagated along it, a tensile shock wave may develop

since the attenuation is then much lower. Mason [67] showed

indications of such behavior in his studies of the free

retraction of rubber specimens. Very recently the author has

carried out some hitherto unreported experiments to investigate

this effect. A specimen of natural rubber gum stock initially

1/2 inch square was stretched to five times its original length.

At one end a portion 10 inches long was extended to 11 inches so

that the strain in this small portion was 440%. This portion was

held at this extra strain by a small piece of steel piano wire

which was rapidly volatilised by the passing of a heavy electric

current, a tensile pulse then travelled along the stretched

specimen. The velocity-time profiles of the tensile pulse at a

series of stations along the rubber was measured by affixing light

wires to the rubber at various points along it and amplifying theJ

currents induced in these as they cut the lines of force of strong

uniform magnetic fields which were produced by permanent magnets. The

technique was similar to that described by Efron and Malvern [681.

Figure 8 shows the velocity time profiles of the pulse as it

travels along the rubber band. The shapes are given at 1, 3, 5, 7,

and 9 ft. from the point of release. It can be seen that the

front of the pulse becomes progressively steeper as it travels

along the rubber specimenand is quite sharp at the 7 and 9 ft.

sations. A paper is being prepared on this work and it is hoped

that it will appear shortly.
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Stress Waves and Fracture

The earliest work on the fractures produced by stress waves

was carried out by John Hopkinson in 1872 [69]. Further work was

later carried out by his son Bertram Hopkinson [70] who was killed

in the First World War. The subject was then neglected until compar-

atively recent times, but during and since World War II there has

been a steady output of work on this subject. The book by

Rinehart and Pearson [28] and a recent review article by Rader and

the author [29] cover many of these investigations, which have all

been concerned with the nature of the fractures produced in stress-

wave loading. Recently the complementary problem namely the stress

pulses produced by brittle fractures has been receiving attention

at Brown University.

The first work on this was carried out by Tsai and the

author [711 who studied the surface waves produced by the impacts

of steel balls on glass plates. It was shown that when fracture

occurs the outgoing stress pulse shows 'spikes' which were other-

wise absent, and that the position of these spikes agrees with the

theoretical analysis of the problem of a Hertzian impact.

More recently J. Phillips [72] has studied the problem

of the stress pulses generated in glass rods when they are broken

in tension and in flexure, a small notch was first made on the

surface of the rod to initiate fracture. The analysis of the

flexure problem is extremely complex, but for the case of fracture

in tension, Phillips was able to show that two pulses are

generated, one a longitudinal pulse, (this is to be expected since
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the tensile force goes rapidly from its initial value to zero)

and also a flexuralpulse; this results from the bending moment

set up by the asymmetrical nature of the stress release.

Figure 9 shows a comparison of the experimental curve observed by

Phillips with a strain gage mounted on the surface of a glass rod

at a distance of 6.2 inches from the position of the fracture

initiation. The strain gage was mounted in line with the notch

so that both longitudinal and flexural pulses could be observed.

These experimental results are compared with the calculations

made on the basis of the propagation of elastic waves along the

rod. He assumed that the fracture spread out from the point of

initiation at a constant velocity equal to 0.38 times the velocity

C of longitudinal elastic waves along the rod. c0 = (E/p) 1 / 2

and that the stress in the unbroken region remained unchanged.

Phillips further assumed that the longitudinal pulse travelled

along the rod without change in form, while the equation governing

the propagation of flexural waves was that developed by

Timoshenko [731, which R.M. Davies [74] has shown gives results

extremely close to the exact Pochhammer-Chree theory for

cylindrical bars when the first mode of propagation is considered.

In order to take into account all the boundary conditions at the

plane of fracture, Phillips found he had to use both branches of

the solutions of the Timoshenko equation. It may be seen that

the agreement between experiment and theory is remarkably good.
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Conclusion

There are two ultimate reasons for carrying out experi-

ments on the dynamic mechanical behavior of anelastic solids.

The first is to obtain numerical data which can be used to

predict the mechanical behavior of systems under conditions that have

not hitherto been studied. In order to do this, mathematical

models have to be set up which, while simple enough to make the

mathematics tractable, incorporate enough of the features of

physical reality to give reasonably numerical predictions of the

quantities in regions outside the field of measurement, and

which provide good interpolations or reasonable extrapolations of

the physical facts. It is often very tempting to believe in the

physical existence of these models as for example in the existence

of real springs and viscous dashpots in linear viscoelasticity,

but generally nature is nothing like So simple as this and a

realistic physical model of even something very much less

complicated, like liquid benzene, has never really been achieved.

The other reason for carrying out such measurements is

in the hope of obtaining a better understanding of the molecular

processes which are responsible for the observed macroscopic

behavior. This approach has been extremely successful in

elucidating the behavior of gases but has been markedly less so

in treating the mechanical behavior of liquids and solids.

The theory of dislocations first developed by G.I. Taylor [751

is a notable exception to this general rule but even here the

quantitative prediction of dynamic mechanical properties is
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still a long way off.

In conclusion it would perhaps be appropriate to call for

more experimental work even if it is at the expense of the vast

amount of theory which is so often based on oversimplified models

of mechanical behavior, and to make a plea for some workers in

the field to leave their desks and enter the harsh but exciting

world of the laboratory.
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Legends for Figures

1. Measured values of tan 6 compared with experimental results.
A - polyethylene, B - polymethylmethacrylate, C - ebonite,
D - polystyrene, E - hydroxypentamethylflavan, F - glycerol
sextol phtalate, M - Maxwell solid, K - Kelvin solid,
SL - standard linear solid.

2. Comparison of measured universal pulse shape with
experimentally observed pulse which has travelled through
600 cm. of polymethylmethacrylate.

3. Experimental set-up for pulse propagation in blocks of
plastics.

4. Comparison of observed pulse shape with that theoretically
predicted for different values of bulk loss. A-zero bulk loss,
B-bulk loss = l/s(shear loss), C-bulk loss = shear loss.

5. Comparison of rate-dependent and rate-independent postulates
in predicting plastic wave profiles (after MalVern).

6. Comparison of static and dynamic stress-strain curves for
pure aluminum.

7. Dynamic modulus and tangent modulus of 'static' stress-strain
curve of natural rubber as a function of longitudinal strain
(after Hillier).

8. Stages in formation of tensile shock front in rubber specimen.

9. Strain gage observations on surface of glass rod resulting
from tensile fracture. (after Phillips)
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